Chapter 10. Chain-Growth Polymerization()

10.1. Introduction

Step-Growth

가

•

high conversion high MW long reaction time

Chain - Growth

radical anionic, cation

anionic, cationic, reaction site

monomer unit

size

• active species active center

kinetic chain reaction

.

Free Radical	Free Radical Initiation	
Cationic	Cationic Initiation	
Anionic } Ionic	Anionic Initiation	

Kinetic Chain Reaction(

•

- 가
 - 1) (Initiation)-
 - 2) (propagation)-
 - (termination)-kinetic chain(chain transfer)-physical chain

kinetic chain

Kinetic Chain Length (): v

•

10.2. General Kinetic Scheme

1)Initiation

•I
$$\xrightarrow{k_d}$$
 2R*
active center (radical or ion)
 k_d :
 $\sim 10^{-4} \sim 10^{-6}$ l/mole· sec

$$\bullet R^* + M \xrightarrow{\quad k_i \quad} RM^* \quad \text{or} \quad {M_1}^*$$

$$\stackrel{\bullet}{\longleftarrow} (\text{primary active species or primary radical or initiator radical})$$

 k_i :

2)Propagation

$$M_n^* + M \longrightarrow M_{n+1}^*$$

k_p:

$$10^2 \sim 10^4$$
 l/mole· sec step-growth

3)Termination

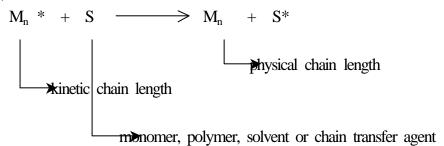
• (coupling or combination): Kinetic chain length 가 polymer 가

$$\overline{DP_n} = 2$$

$$M_n \ ^* \ + \ M_m^* \quad \xrightarrow{\quad k_p \quad} M_{n+m}$$

• (不均化, disproportionation)

:
$$\frac{\text{kinetic chain length 7}}{\overline{DP_n}} = \text{polymer 7}$$


k_{td}

$$M_n^* + M_m^* \longrightarrow M_n + M_m$$

•

$$M_n^* + M_m^* \xrightarrow{k_t} M_{dead \ polymer}$$
 $k_t = k_{tc} + k_{td} \sim 10^6 \text{--} 10^8 \ l/mole \cdot sec}$

4)Chain Transfer

Kinetic Chain Length(

: ()
ex) 4 가 4000 disproportionation
,
=4000/4 =1000
step 1,2,3
, Chain Transfer 가

)

Physical Chain Length(): Step 1,2,3,4

10.3. Kinetic Chain Reaction

10.3.1. Non-Polymerization Reaction

Peroxide induced bromination of toluene

1)Initiation

Two types of reaction

• R-O-O-R
$$\longrightarrow$$
 2RO• (1)

• R-O• + Br₂
$$\longrightarrow$$
 ROBr + Br• (2)

$$R-O \bullet + \phi CH_3 \longrightarrow ROH + \phi CH_2 \bullet$$
 (3)

ROOR 가 kinetic chain

2)Propagation

•
$$Br$$
• + ϕCH_3 $\longrightarrow HBr$ + ϕCH_2 • (4)

•
$$\phi CH_2 \bullet + Br_2 \longrightarrow \phi CH_2Br + Br \bullet$$
 (5)

가

active species

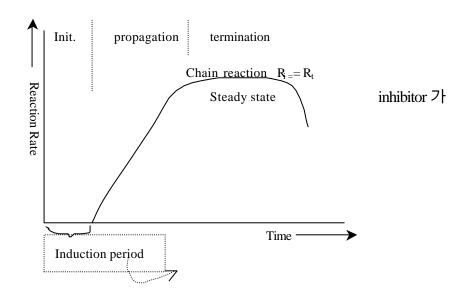
kinetic chain reaction

3)Termination

•
$$2 \text{ Br} \bullet \longrightarrow \text{Br}_2$$

•
$$2\phi CH_2 \bullet \longrightarrow \phi CH_2 CH_2 \phi$$

•
$$\phi CH_2 \bullet + Br \bullet \longrightarrow \phi CH_2Br$$


kinetic chain

NET EFFECT OF KINETIC Chain rexn:

One ROOR molecule can cause the formation of $Br_{2,}\,\phi CH_2CH_2\varphi,\,\phi CH_2Br,$ HBr, .

10.3.2. Non-Chain Chain Polymerization Reaction

non-chain chain polymerization reaction

Chain reaction (induction period) 가 .
inhibitor 가 . active center 가
가 (steady state)
. 가 plateau region level
off . . .

Linear Chain-Growth polymerization : polymer of high $\overline{DP_n}$ found easily in early reaction

Linear Step-Growth polymerization : high extent of reacion value required to obtain high $\overline{DP_n}$

10.3.3. Free Radical Ionic Reaction

- Ionic Initiation multiple bond addition ring opening polymerization 7
- Radical Initiation ring-opening polymerization

Free Radical ionic , mechanism

Ex)

$$\begin{array}{c} \mathsf{CH_3^-C}\!\!=\!\!\mathsf{CH_2} \\ \mathsf{CH_3} \end{array} \qquad \text{cationic initiation}$$

will not produce free radical

$$R + H_3C$$
 $C = CH_2$
 H_3C
 $C = CH_2$
 H_3C
 $C = CH_2$
 H_3C
 $C = CH_2$
 $C = CH_2$

)

	Io	Free Radical	
	Anionic	Cationic	
Ring opening	+	-	-
End-groups	e.g. R AlCl ₄ — Degree of association Solvent-system polar End group stabilit Type & size of scoun Temp. Degree of association i Reaction rates Termination rate Stereospecificity(s polymer	Truly Free Radical (no association)	
Termination Step	Living polymer Block copolymer 가		(bimolecular) combination disproportionation フト

10.3.4. Free Radical Reaction Ionic Reaction Termination Step

A) Free Radical Termination

unsaturated group.

Two molecules involved

= bimolecular reaction

B) Cationic Termination

proton release free radical disproportionation

(<u>unimolecular</u> reaction)

C) Anionic Termination

Termination is rare but can occur by loss of a hydride ion(H^E)

$$CH_{2}-CH$$

$$R + M$$

$$\downarrow \quad -H$$

$$CH=CH$$

$$R + M$$

Unimolecular type termination occurs

	Anionic	Cationic		Free Radical
	Termination	Termination	on	Termination
Reaction rate	Unimolecular Unimolecular		Bimolecular	
	High concentra	High concentration of growing		Relatively low
	chains $10^{-2} \sim 10^{-3}$ molar Rates		es	concentration of
	$10^4 \sim 10^5$ times higher than free		ree	growing chains
	radical			10 ⁻⁸ ~10 ⁻⁹ molar
				occurs at high rates
ΔΕ	Activation Energies Similar			
Chain Transfer	Negligible		+	+
Disadvantage	Rigorous Purity or			
	precautions(free of water)			
Polymer System	Solution or Bulk		Wide variety of polymer	
			systems, Gas, Solid,	
				Solution, Bulk,
				Precipitation,
			S	Suspension, Emulsion

10.3.5 Free Radical Initiated Polymerization of Unsaturated monomers

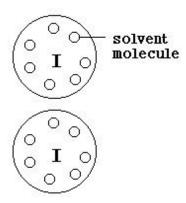
Kinetic Scheme

1) **Initiation**

Two step sequence-Both enter into overall rate

1. Initiator decomposition

$$I_2 k_d \rightarrow 2I \bullet$$


2. Initiator fragment $7 \nmid 7 \nmid$, chain growth $I \bullet + M \xrightarrow{k_i} IM \bullet$ Primary radical species

Initiator efficiency(f) desired reaction side reaction

, 0.5<<f<1

a. Cage Effect – primary recombination

Initiator fragments surrounded by restricting cage of solvent

Ex)
$$O O CH_3$$
 $C-O-O-C-CH_3$ (acetyl peroxide)

- i. Recombination possible I_2 $\longrightarrow 2I$
- ii. free radical cage elimination reaction

Radical combination

가

Inactive Species

$$\overset{\cdot}{CH_3}$$
 $\overset{\cdot}{+}$ $\overset{\cdot}{CH_3}$ $\overset{\cdot}{\longrightarrow}$ CH_3 $\overset{\cdot}{\longrightarrow}$ CH_3 ethane

$$CH_3 + CH_3 - C O$$
 $CH_3 - CH_3 - C O$

methyl acetate

b. Induced Decomposition – secondary combination

i. radical peroxide

$$\bullet$$
R + R'-O-O-R' \longrightarrow RH + \bullet R'OOR' \longrightarrow R'=O + R'O \bullet
, R \bullet +R'OOR' \longrightarrow ROR'+ $\underline{R'O}\bullet$

peroxide

total number of radical

ii. Chain Transfer to Solvent

$$I \bullet + SH \longrightarrow IH + S \bullet$$

$$S \bullet + I_2 \longrightarrow SI + I \bullet$$

.

iii. Reaction with Chain Radical

$$I \bullet + M \longrightarrow IMn \bullet$$

$$IMn \bullet + I_2 \longrightarrow IMnI + I \bullet$$

가

efficiency fator

<u>f: Initiator Efficiency</u>

=mole fraction of initiator fragments that actually initiate polymer chains.

c. Reaction Rate

$$R_{i} = \frac{d[M \cdot]}{dt}$$

$$= k_{i}[I \cdot][M]$$

$$= 2fk_{d}[I_{2}]$$

by convention, radical 2 .

[M•]7├ chain radical

 $M \bullet = IM \bullet$

$$f \approx 1$$

f < 1

$$R_{i}$$

$$R_i$$
 $[M]$

$$[I_2]$$
 \uparrow f

 $[I_2]$ \uparrow f \downarrow due to induced decomposition

d. Initiator

thermal decomposition

가

O-O

s-s

N-N

가

Acetyl peroxide, or benzoyl peroxide, 80~100°C

$$\left\langle \begin{array}{c} \begin{array}{c} CH_3 \\ \\ \\ C- \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ \\ CH_3 \end{array} \right\rangle$$

Alkyl peroxide, cumyl or t-butyl peroxide

$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$
 $CH_{3} - CH_{3} - CH_{3}$

$$\begin{array}{c}\mathsf{CH}_3\\\mathsf{H}_3\mathsf{C-C-O-OH}\\\mathsf{CH}_3\end{array}$$

Hydroperoxides(cumyl or t-butyl)

AIBN (2,2' azobisisobutyronitrile)

3) Propagation

$$I \bullet + M \xrightarrow{k_p} IM_2 \bullet$$

$$\cdots \xrightarrow{k_p} \cdots IM_n \bullet$$

$$R_p = -\frac{d[M]}{dt} = k_p[M][M \bullet]$$

3) Termination

 k_{tc}

$$R_{t} = -\frac{d [M \bullet]}{dt} = 2 (k_{tc} + k_{td})[M \bullet]^{2}$$
By convention

4) Overall Rate of Polymerization.

$$R_o = k_i[I \bullet][M] + k_p[M \bullet][M]$$

(# of propagation step >>> # of initiation step) \therefore

$$R_o \sim R_p = k_p[M][M \bullet]$$

Radical concentration

- 7 (~10⁻⁸ molar)
- term .
- lacksquare , [Mullet] R_0 .

[**M**•]

Steady-State Assumption

가 가 constant

reaction rate change 가 0

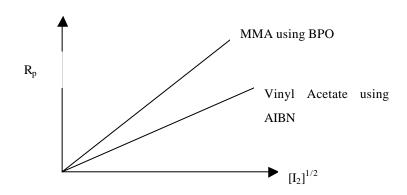
(active centers created and destroyed at the same time)

$$R_i = R_t$$

$$2fk_d[I_2] = 2(k_{tc} + k_{td})[M \bullet]^2$$

$$\therefore [M \bullet] = \left(\frac{fk_d}{k_{tc} + k_{td}}\right)^{\frac{1}{2}} [I_2]^{\frac{1}{2}}$$

$$or = \left[\frac{R_i}{2R_t}\right]^{\frac{1}{2}}$$


1/2

recall
$$R_p = -\frac{d[M]}{dt} = k_p[M][M \cdot]$$

$$R_{p} = k_{p} [M] [I_{2}]^{\frac{1}{2}} (\frac{f k_{d}}{k_{tc} + k_{td}})^{\frac{1}{2}}$$

f<1 system $[I_2]^{1/2}$ 7\dagger . square root dependence of $[I_2]$.

Odian Fig. 3-4

Azobisisobutyronitrile

f<1 SRD 가

f7 [M] dependent

(<u>Why?</u>

Due to induced decomposition of toluene $t[I_2]$

10.4 Kinetic Chain Length (KLC)

At Steady-State assumption

1) Disproportionation

$$KCL = \frac{}{}$$

$$= \frac{R_p}{R_r (= R_r)}$$

Knowing that

$$R_{t} = R_{td} + R_{tc} = -\frac{d[M \bullet]}{dt}$$

2) Coupling or combination

$$= \frac{1}{2}k_{tc} \quad (\because \qquad \qquad 2 \qquad \qquad 1 \qquad)$$

$$R_{tc} = -\frac{d[M \bullet]}{dt}\Big|_{term}$$

3)

$$KCL = \frac{R_p}{R_t} = \frac{R_p}{R_{td} + \frac{1}{2}R_{tc}} = \frac{2R_p}{R_{td} + \frac{R_{tc} + R_{td}}{R_t}}$$
$$= \frac{2R_p}{R_t(1 + \frac{R_{td}}{R})}$$

define $y = \frac{R_{td}}{R_t}$: fraction of termination caused by disproportionation $KCL = \frac{2R_p}{R_t(1+y)}$

$$\overline{DP_n} = \frac{-d[M]/dt}{d[Polymer]/dt}$$

1) Dispropotionation

$$\overline{DP_n} = \mathbf{n}$$

2) Coupling

$$\overline{DP_n} = 2\mathbf{n}$$

3)

Polymer
$$= R_{td} + \frac{1}{2} R_{tc}$$
$$= R_{p}$$

$$\overline{DP_n} = \frac{R_p}{R_{td} + \frac{1}{2}R_{tc}} = \frac{2R_p}{R_t(1+y)} \cdots (1) \qquad \text{where} \qquad y = \frac{R_{td}}{R_t}$$

$$\overline{DP_n} = \frac{2\mathbf{n}}{1+y}$$

knowing that
$$R_{p} = k_{p} \left\{ \frac{k_{d}}{k_{t}} f[I_{2}] \right\}^{\frac{1}{2}} [M] \quad \cdots (2)$$

$$R_{t} = R_{i} = 2 f k_{d} [I_{2}] \quad \cdots (3)$$

(1),(2),(3) Chain transfer 7 steady-state assumption

$$\overline{DP_n} = \frac{k_p[M]}{(1+y)k_t \left\{ \frac{k_d}{k_t} f[I_2] \right\}^{\frac{1}{2}}} \quad \dots (4)$$
(2),(4)

or
$$\overline{DP_n} = \frac{k_p^2 [M]^2}{(1+y)k_t R_p}$$
 ·····(5)

10.5 Chain Transfer

$$M \bullet + XY \longrightarrow MX + Y \bullet$$

Chain transfer agent

Chain transfer 7 P_p DP_n

.

$$(\qquad \qquad R_p = k_p[M][M \bullet] \qquad \qquad [Y \bullet] \qquad \qquad)$$

(1) 가 chain transfer agent transfer 가

chain transfer coefficient 가 .

(2) transfer 가

Inhibitor and Retarder

• Inhibitor ()

Y∙

hydroquinone

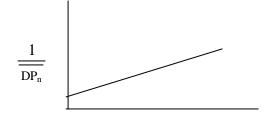
• Retarder (

Y• ,

MW mercaptan

chain transfer 가

$$\frac{d [Polymer]}{dt} = R_{td} + \frac{1}{2}R_{tc} + \sum_{tr} R_{tr}$$


$$\therefore \overline{DP}_{n} = \frac{R_{p}}{\frac{d [Polymer]}{dt}} = \frac{2R_{p}}{R_{t}(1+y) + 2\sum_{tr} R_{tr}}$$

$$= \frac{2k_{p}[M][M \bullet]}{2k_{t}[M \bullet]^{2}(1+y) + 2\sum_{tr} k_{tr}[M \bullet][XY]}$$

$$= \frac{k_{p}[M]}{k_{t}[M \bullet](1+y) + \sum_{tr} k_{tr}[XY]}$$

$$Knowing that [M \bullet] = {\frac{k_{d} f}{k_{t}}[I_{2}]}^{\frac{1}{2}}$$

$$\begin{split} \overline{DP_n} &= \frac{k_p[M]}{k_t(1+y) \left\{ \frac{k_d}{k_t} f \cdot [I_2] \right\}^{\frac{1}{2}} + \sum_{tr} k_{tr}[XY]} \\ \frac{1}{\overline{DP_n}} &= \frac{k_t(1+y)}{k_p[M]} \left\{ \frac{k_d}{k_t} f \cdot [I_2] \right\}^{\frac{1}{2}} + \frac{\sum_{tr} k_{tr}[XY]}{k_p[M]} \\ \frac{1}{\overline{DP_n}} &= \frac{1}{\overline{DP_{n,0}}} + \frac{k_{tr,s}[S]}{k_p[M]} + \frac{k_{tr,t}[T]}{k_p[M]} + \cdots \\ \frac{1}{\overline{DP_n}} &= \frac{1}{\overline{DP_{n,0}}} + C_S \frac{[S]}{[M]} + C_T \frac{[T]}{[M]} + \cdots \end{aligned}$$

See Odian P.235

[S]/[M]

chain transfer codfficient Cs

10.6 Temperature Dependence of R_p and DP_n

Assume: no chain transfer

$$R_{p} = k_{p} \left\{ \left(\frac{k_{d}}{k_{t}} \right) f \cdot [I_{2}] \right\}^{\frac{1}{2}} [M]$$

$$\ln R_{p} = \ln[M] + \ln \left[k_{p} \left(\frac{k_{d}}{k_{t}} \right)^{\frac{1}{2}} \right] + \ln[f[I_{2}]]^{\frac{1}{2}} \cdot \dots (1)$$

$$k_{p} = k_{p}^{\circ} e^{-E_{r}/RT} \qquad E_{p} \qquad 5 \sim 8 \, kcal \, / \, mole$$

$$k_{d} = k_{d}^{\circ} e^{-E_{d}/RT} \qquad E_{d} \qquad 30 \, kcal \, / \, mole$$

$$k_{t} = k_{t}^{\circ} e^{-E_{t}/RT} \qquad E_{t} \qquad 2 \sim 5 \, kcal \, / \, mole$$

From Eq(1), and assume $[I_2]$, [M] = const, f independent of T.

$$\frac{d \ln R_p}{dT} = \frac{d \ln \left[k_p \left(\frac{k_d}{k_t}\right)^{\frac{1}{2}}\right]}{dT}$$

$$= \frac{E_p - \frac{E_t}{2} + \frac{E_d}{2}}{RT^2} = \frac{7 - 2 + 15}{RT^2} > 0$$

 \therefore slope of lnR_p/T is positive (+)

$$\therefore$$
 as T \uparrow $\ln R_p \uparrow$

but rate of increase \downarrow as d $lnR_p/dT \downarrow$

$$\overline{DP_n} = \frac{2R_p}{R_t(1+y)}$$
 , $\mathbf{n} = \frac{R_p}{R_t} = \frac{R_p}{R_i}$

$$\frac{d \ln \mathbf{n}}{dT} = \frac{E_p - \frac{E_t}{2} - \frac{E_d}{2}}{RT^2} = \frac{7 - 2 - 15}{RT^2} < 0$$

$$\therefore as \ T \uparrow, \ \ln \mathbf{n} \downarrow \ \overline{DP_n} \downarrow$$

$$[I] \uparrow R_p \uparrow but \overline{DP_n} \downarrow T \uparrow \mathbf{n} \downarrow \overline{DP_n} \downarrow$$

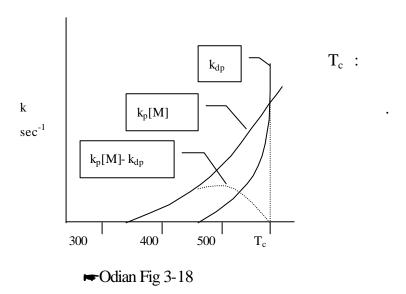
10.7 <u>Ceiling Temperature</u>-Polymerization-Depolymerization Equilibria.

$$M_n \bullet + M$$
 $k_{dep.}$ $M_{n+1} \bullet$ as $T \uparrow$

Equilibrium const.
$$K = \frac{[M_{n+1} \bullet]}{[M_n \bullet][M]} = \frac{1}{[M]}$$

$$\Delta G = \Delta H - T \Delta S$$

= $\Delta G^{\circ} + RT \ln K$ for any chemical rexn.


at eq.
$$\Delta G = 0$$

$$\therefore \ln K = -\frac{\Delta G^{\circ}}{RT} = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

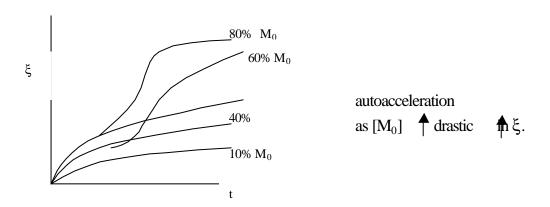
$$T_c = \frac{\Delta H^{\circ}}{\Delta S^{\circ} + R \ln[M]_c}$$
 Ceiling Temperature

 \therefore for each [M]_c get various T_c

Monomer	-ΔH [°] kcal/g mole	T _c °C (bulk)
Styrene	16	235
MMA	13	164
Ethylene	26	407
Propylene	21	300
α-methyl Styrene	7	6

Entropy changes for all polymers are not so different.

10.8 Trommsdorff Effect or Gel Effect.


Remember
$$-\frac{d \ [I]}{dt} = k_d \ [I] \qquad [I] = [I_0] e^{-k_d t}$$

$$k_d \ 7 \ [I] \approx [I_0]$$

At CSTR, conc. is const, Batch reactor, conc. const.

$$v_{p} = -\frac{d[M]}{dt} \approx const[M]$$

$$\frac{[M]}{[M_{0}]} = e^{-kt}$$
% conversion
$$= \frac{[M_{0}] - [M]}{[M_{0}]} = 1 - \frac{[M]}{[M_{0}]} = \mathbf{x}$$

$$\mathbf{X} = 1 - e^{-kt}$$
 : one would expect $\hat{\mathbf{i}} \downarrow \text{as } t \uparrow$ $\hat{\mathbf{i}} \uparrow \text{as } [M_0] \uparrow$

